Фаготерапия при лечении боевой травмы
https://doi.org/10.25199/2408-9613-2022-9-1-6-11
Аннотация
Высокая устойчивость бактериальной флоры к существующим антибактериальным препаратам заставляет искать новые подходы в тактике лечения инфекционных раневых осложнений. Фаготерапия является одним из альтернативных способов решения данной проблемы. Зарубежные военно-медицинские организации совместно с частными фармацевтическими компаниями при финансовой поддержке государств активно разрабатывают всевозможные пути использования бактериофагов в различных направлениях борьбы с бактериальными инфекционными агентами. В статье обозначены основные научно-исследовательские программы, направленные на изучение возможностей фаготерапии при боевой и ожоговой травме, разрабатываемые в странах Западной Европы (Франции, Польши, Бельгии, Австрии, Швейцарии), США, Китае, Израиле.
Об авторе
В. В. БесчастновРоссия
Владимир Викторович Бесчастнов
603005, Нижний Новгород, пл. Минина, д. 10/1
Список литературы
1. Murray C. K, Wilkins K. , Molter N. C., et al. Infections complicating the care of combat casualties during operations Iraqi Freedom and Enduring Freedom. J Trauma. 2011; 71 (1 Suppl): S62–73.
2. Petersen K., Riddle M. S., Danko J.R., et al. Trauma-related infections in battlefield casualties from Iraq. Ann Surg. 2007; 245 (5): 803–811.
3. Krueger C. A., Wenke J. C., Ficke J. R. Ten years at war: comprehensive analysis of amputation trends. J Trauma Acute Care Surg. 2012; 73 (6 Suppl 5): S438–S444.
4. Weintrob A. C., Murray C. K., Xu J., et al. Early Infections Complicating the Care of Combat Casualties from Iraq and Afghanistan. Surg Infect (Larchmt). 2018; 19 (3): 286–297.
5. McDonald J. R., Liang S. Y., Li P., et al. Infectious Complications After Deployment Trauma: Following Wounded US Military Personnel Into Veterans Affairs Care. Clin Infect Dis. 2018; 67 (8): 1205–1212.
6. Rostami S., Farajzadeh Sheikh A., Shoja S., et al. Investigating of four main carbapenem-resistance mechanisms in highlevel carbapenem resistant Pseudomonas aeruginosa isolated from burn patients. J Chin Med Assoc. 2018; 81 (2): 127–132.
7. Кокин Г. А. Применение бактериофагов в хирургии. Советская медицина. 1941; 9: 15–18.
8. Крестовникова В.А. Фаготерапия и фагопрофилактика и их обоснование в работах советских исследователей. Журнал микробиологии, эпидемиологии и иммунологии. 1947; 11: 56–65.
9. Покровская М. П. Каганова Л. С., Морозенко М. А. и др. Лечение ран бактериофагами. М.: Медгиз, 1941. 51 с.
10. Häusler T. Virus vs. Superbug: A solution to the antibiotic crisis? New York, N.Y: Macmillan, 2006. 294 p.
11. Kwiatek M., Parasion S., Nakonieczna A. Therapeutic bacteriophages as a rescue treatment for drug-resistant infections – an in vivo studies overview. J Appl Microbiol. 2020; 128 (4): 985–1002.
12. Mirski T., Lidia M., Nakonieczna A., Gryko R. Bacteriophages, phage endolysins and antimicrobial peptides – the possibilities for their common use to combat infections and in the design of new drugs. Ann Agric Environ Med. 2019; 26 (2): 203–209.
13. Zimecki M., Artym J., Kocieba M., et al. Effects of prophylactic administration of bacteriophages to immunosuppressed mice infected with Staphylococcus aureus. BMC Microbiol. 2009; 9: 169.
14. Przerwa A., Zimecki M., Switała-Jeleń K., et al. Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol. 2006; 195: 143–150.
15. Górski A., Jończyk-Matysiak E., Łusiak- Szelachowska M., et al. Phage therapy in allergic disorders? Exp Biol Med (Maywood). 2018; 243 (6): 534–537.
16. Górski A., Dąbrowska K., Międzybrodzki R., et al. Phages and immunomodulation. Future Microbiol. 2017; 12: 905–914.
17. Górski A., Jończyk-Matysiak E., Łusiak- Szelachowska M., et al. The Potential of Phage Therapy in Sepsis. Front Immunol. 2017; 8: 1783.
18. Chang R. Y. K., Morales S., Okamoto Y., Chan H. K. Topical application of bacteriophages for treatment of wound infections. Transl Res. 2020; 220: 153–166.
19. Myelnikov D. An Alternative Cure: The Adoption and Survival of Bacteriophage Therapy in the USSR, 1922–1955. J Hist Med Allied Sci. 2018; 73 (4): 385–411.
20. Chanishvili N. Bacteriophages as Therapeutic and Prophylactic Means: Summary of the Soviet and Post Soviet Experiences. Curr Drug Deliv. 2016; 13 (3): 309–323.
21. Verbeken G., Huys I., Pirnay J. P., et al. Taking bacteriophage therapy seriously: a moral argument. Biomed Res Int. 2014; 2014: 621316.
22. FDA разрешило применение бактериофагов у больных COVID-19. Phagex. Фагопрепараты и фаготерапия.
23. Pirnay J. P., Verbeken G., Ceyssens P. J., et al. The Magistral Phage. Viruses. 2018; 10: 64.
24. Schooley R. T., Biswas B., Gill J. J., et al. Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection Antimicrob Agents Chemother. 2017; 61 (10): e00954–e00917.
25. Duplessis C., Biswas B., Hanisch B., et al. Refractory Pseudomonas Bacteremia in a 2-Year-Old Sterilized by Bacteriophage Therapy. J Pediatric Infect Dis Soc. 2018; 7 (3): 253–256.
26. Vogt D., Sperling S., Tkhilaishvili T., et al. Beyond antibiotic therapy – Future antiinfective strategies – Update 2017. Unfallchirurg. 2017; 120 (7): 573–584.
27. Oechslin F., Piccardi P., Mancini S., et al. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 2017; 215: 703–712.
28. Valério N., Oliveira C., Jesus V., et al. Effects of single and combined use of bacteriophages and antibiotics to inactivate Escherichia coli. Virus Res. 2017; 240: 8–17.
29. Ryan E. M., Alkawareek M. Y., Donnelly R. F., Gilmore B. F. Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol. 2012; 65: 395–398.
30. Chaudhry W. N., Concepción-Acevedo J., Park T., et al. Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS ONE. 2017; 12: e0168615.
31. Marza J. A., Soothill J. S., Boydell P., Collyns T. A. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns. 2006; 32 (5): 644–646.
32. Melo L. D. R., Oliveira H., Pires D. P., et al. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol. 2020; 46 (1): 78–99.
33. Freyberger H. R., He Y., Roth A. L., et al. Effects of Staphylococcus aureus Bacteriophage K on Expression of Cytokines and Activation Markers by Human Dendritic Cells In Vitro. Viruses. 2018; 10(11): 617.
34. Regeimbal J. M., Jacobs A. C., Corey B. W., et al. Personalized Therapeutic Cocktail of Wild Environmental Phages Rescues Mice from Acinetobacter baumannii Wound Infections. Antimicrob Agents Chemother. 2016; 60 (10): 5806–5816.
35. Jault P., Leclerc T., Jennes S., et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019; 19 (1): 35–45.
36. Kaur P., Gondil V. S., Chhibber S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm. 2019; 572: 118779.
37. Dąbrowska K., Abedon S.T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev. 2019; 83 (4): e00012–e00019.
38. Pinto A. M., Cerqueira M. A., Bañobre-Lópes M., et al. Bacteriophages for Chronic Wound Treatment: from Traditional to Novel Delivery Systems. Viruses. 2020; 12 (2): 235.
39. Lin P., Pu Q., Shen G., et al. CdpR Inhibits CRISPR-Cas Adaptive Immunity to Lower Anti-viral Defense while Avoiding Self-Reactivity. iScience. 2019; 13: 55–68.
40. Yin S., Huang G., Zhang Y., et al. Phage Abp1 Rescues Human Cells and Mice from Infection by Pan-Drug Resistant Acinetobacter Baumannii. Cell Physiol Biochem. 2017; 44 (6): 2337–2345.
41. Wang R., Xing S., Zhao F., et al. Characterization and genome analysis of novel phage vB_EfaP_IME195 infecting Enterococcus faecalis. Virus Genes. 2018; 54 (6): 804–811.
42. Deng L. Y., Yang Z. C., Gong Y.L., et al. Therapeutic effect of phages on extensively drug-resistant Acinetobacter baumannii-induced sepsis in mice. Zhonghua Shao Shang Za Zhi. 2016; 32 (9): 523–528.
43. Yang Z. C., Deng L. Y., Gong Y. L., et al. Inventory building of phages against extensively drug-resistant Acinetobacter baumannii isolated from wounds of patients with severe burn and related characteristic analysis. Zhonghua Shao Shang Za Zhi. 2016; 32 (9): 517–522.
44. Gelman D., Eisenkraft A., Chanishvili N., et al. The history and promising future of phage therapy in the military service. J Trauma Acute Care Surg. 2018; 85 (1S Suppl 2): S18–S26.
Рецензия
Для цитирования:
Бесчастнов В.В. Фаготерапия при лечении боевой травмы. Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка. 2022;9(1):6-11. https://doi.org/10.25199/2408-9613-2022-9-1-6-11
For citation:
Beschastnov V.V. Phage therapy in the treatment of combat trauma. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2022;9(1):6-11. (In Russ.) https://doi.org/10.25199/2408-9613-2022-9-1-6-11