Системы для контролируемого высвобождения и адресной доставки факторов роста в лечении хронических ран
https://doi.org/10.25199/2408-9613-2018-5-3-6-15
Аннотация
Факторы роста (ФР) – это эндогенные сигнальные белки, которые регулируют миграцию, пролиферацию и дифференцировку клеток в процессах репарации тканей. Концентрация этих белков в хронических ранах патологически снижена, что приводит к нарушению нормального течения раневого процесса и существенно затрудняет их лечение. В клинической практике используются препараты, содержащие рекомбинантные ФР в свободной форме. Однако их эффективность для лечения хронических ран ограничена, так как в протеолитической среде таких ран ФР подвергаются быстрой деградации. Для преодоления этого недостатка предложены системы для адресной доставки и контролируемого высвобождения на основе биосовместимых материалов: микро- и наночастицы, гидрогели, биопластические материалы. В настоящем обзоре рассмотрены роли ФР в раневом процессе, особенности патофизиологии хронических ран и системы для контролируемого высвобождения и адресной доставки ФР.
Об авторах
А. Р. ЛипуновРоссия
Липунов Артем Ринатович, Химический факультет, Россия, 119234, Москва, ул. Ленинские Горы, д. 1, стр.3
И. М. Афанасов
Россия
Химический факультет, Россия, 119234, Москва, ул. Ленинские Горы, д. 1, стр.3
Е. С. Воробьева
Россия
Россия, 107150, Москва, ул. Бойцовая, д. 22
А. Б. Чухнина
Россия
Химический факультет, Россия, 119234, Москва, ул. Ленинские Горы, д. 1, стр.3
М. Г. Гладкова
Россия
Факультет биоинженерии и биоинформатики, Россия, 119192, Москва, ул. Ленинские Горы, д. 1 стр. 73
А. В. Кибардин
Россия
Россия, 119334, Москва, ул. Вавилова, д. 34/5
В. А. Митиш
Россия
Россия, Большая Серпуховская ул., 27, Москва, 117997
Список литературы
1. Lazarus G. S., Cooper D. M., Knighton D. R., et al. Definitions and guidelines for assessment of wounds and evaluation of healing. Wound Repair Regen., 1994; 2: 165–170.
2. Abdullah K. M., Luthra G., Bilski J. J., et al. Cell-to-cell communication and expression of gap junctional proteins in human diabetic and nondiabetic skin fibroblasts. Endocrine. 1999; 10: 35–41.
3. Schreml S., Szeimies R.-M., Prantl L., et al. Wound healing in the 21st century. J Am Acad Dermatol. 2010; 63: 866–881.
4. Menke N. B., Ward K. R., Witten T. M., et al. Impaired wound healing. Clin Dermatol. 2007; 25: 19–25.
5. Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res. 2009; 37: 1528–1542.
6. Braund R., Hook S., Medlicott N. J. The role of topical growth factors in chronic wounds. Curr Drug Deliv. 2007; 4: 195–204.
7. Robson M. C., Mustoe T. A., Hunt T. K. The future of recombinant growth factors in wound healing. Am J Surg. 1998; 176: 80S–82S.
8. Macri L., Clark R. Tissue engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Skin Pharmacol Physiol. 2009; 22: 83–93.
9. Gainza G., Villullas S., Pedraz J. L., et al. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine. 2015; 11: 1551–1573.
10. Laiva A. L., O'Brien F. J., Keogh M. B. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med. 2018; 12: e296–e312.
11. Briquez P. S., Hubbell J. A., Martino M. M. Extracellular matrix-inspired growth factor delivery systems for skin wound healing. Adv Wound Care. 2015; 4: 479–489.
12. Quatresooz P., Henry F., Paquet P., et al. Deciphering the impaired cytokine cascades in chronic leg ulcers. Int J Mol Med. 2003; 11: 411–418.
13. Han G., Ceilley R. Chronic wound healing: A review of current management and treatments. Adv Ther. 2017; 34: 599–610.
14. Eaglstein W. H., Falanga V. Chronic wounds. Surg Clin North Am. 1997; 77: 689–700.
15. Mekkes J., Loots M., Van Der Wal A., Bos J. Causes, investigation and treatment of leg ulceration. Br J Dermatol. 2003; 148: 388–401.
16. Alba-Loureiro T., Hirabara S., Mendonca J., et al. Diabetes causes marked changes in function and metabolism of rat neutrophils. J Endocrinol. 2006; 188: 295–303.
17. Blakytny R., Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006; 23: 594–608.
18. Barrientos S., Stojadinovic O., Golinko M. S., Brem H., Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008; 16: 585–601.
19. Koria P. Delivery of growth factors for tissue regeneration and wound healing. BioDrugs. 2012; 26: 163–175.
20. Werner S., Grose R. Regulation of wound healing by growth factors and cytokines. Physiol Rev. 2003; 83: 835–870.
21. Losi P., Briganti E., Errico C., et al. Fibrin-based scaffold incorporating VEGFand bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013; 9: 7814–7821.
22. Traversa B., Sussman G. The role of growth factors, cytokines and proteases in wound management. Primary Intention: The Australian Journal of Wound Management. 2001; 9: 161.
23. Gartner M. H., Benson J. D., Caldwell M. D. Insulin-like growth factors I and II expression in the healing wound. J Surg Res. 1992; 52: 389–394.
24. Mansukhani A., Dell'Era P., Moscatelli D., et al. Characterization of the murine BEK fibroblast growth factor (FGF) receptor: activation by three members of the FGF family and requirement for heparin. Proc Natl Acad Sci. 1992; 89: 3305–3309.
25. Wang X.-J., Han G., Owens P., et al. Role of TGFβ-mediated inflammation in cutaneous wound healing. J Investig Dermatol Symp Proc. 2006; 11: 112–117.
26. Butler M. Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol Biotechnol. 2005; 68: 283–291.
27. Gonchar I., Lipunov A., Afanasov I., et al. Platelet rich plasma and growth factors cocktails for diabetic foot ulcers treatment: state of art developments and future prospects. Diabetes Metab Syndr. 2018; 12: 189–194.
28. Park J. W., Hwang S. R., Yoon I.-S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017; 22: 1259.
29. Lee K., Silva E. A., Mooney D. J. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. JR Soc Interface. 2011; 8: 153–170.
30. Kuhl P. R., Griffith-Cima L. G. Tethered epidermal growth factor as a paradigm for growth factor–induced stimulation from the solid phase. Nat Med. 1996; 2: 1022.
31. Mann B. K., Schmedlen R. H., West J. L. Tethered-TGF-β increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001; 22: 439–444.
32. Chiu L. L., Weisel R. D., Li R. K., Radisic M. Defining conditions for covalent immobilization of angiogenic growth factors onto scaffolds for tissue engineering. J Tissue Eng Regen Med. 2011; 5: 69–84.
33. Ho Y.-C., Mi F.-L., Sung H.-W., Kuo P.-L. Heparin-functionalized chitosan–alginate scaffolds for controlled release of growth factor. Int J Pharm. 2009; 376: 69–75.
34. Eckhardt S., Brunetto P. S., Gagnon J., et al. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev. 2013; 113: 4708–4754.
35. Ahn J., Ko J., Lee S., et al. Microfluidics in nanoparticle drug delivery; From synthesis to pre-clinical screening. Adv Drug Deliv Rev. 2018; 128: 29–53.
36. Brown G. L., Curtsinger L. J., White M., et al. Acceleration of tensile strength of incisions treated with EGF and TGFbeta. Ann Surg. 1988; 208: 788.
37. Alemdaroğlu C., Degim Z., Celebi N., et al. Investigation of epidermal growth factor containing liposome formulation effects on burn wound healing. J Biomed Mater Res A. 2008; 85: 271–283.
38. Ishihara M., Ono K., Sato M., et al. Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen. 2001; 9: 513–521.
39. Değim Z., Çelebi N., Alemdaroğlu C., et al. Evaluation of chitosan gel containing liposome-loaded epidermal growth factor on burn wound healing. Int Wound J. 2011; 8: 343–354.
40. Gainza G., Bonafonte D. C., Moreno B., et al. The topical administration of rhEGF-loaded nanostructured lipid carriers (rhEGF-NLC) improves healing in a porcine full-thickness excisional wound model. J Control Release. 2015; 197: 41–47.
41. Dong X., Xu J., Wang W., et al. Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres. Sci China C Life Sci. 2008; 51: 1039–1044.
42. Chu Y., Yu D., Wang P., et al. Nanotechnology promotes the full-thickness diabetic wound healing effect of recombinant human epidermal growth factor in diabetic rats. Wound Repair Regen. 2010; 18: 499–505.
43. Bhang S. H., Lee T.-J., Lim J. M., et al. The effect of the controlled release of nerve growth factor from collagen gel on the efficiency of neural cell culture. Biomaterials. 2009; 30: 126–132.
44. Choi M., Chung J.-H., Cho Y., rt al. Nano-film modification of collagen hydrogels for controlled growth factor release. Chem Eng Sci. 2015; 137: 626–630.
45. Gohil S., Padmanabhan A., Deschamps J., Nair L. Chitosan-based scaffolds for growth factor delivery. In Chitosan Based Biomaterials Volume 2, 175–207 pp.
46. Alemdaroğlu C., Değim Z., Çelebi N., et al. An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns. 2006; 32: 319–327.
47. Yenilmez E., Başaran E., Arslan R., et al. Chitosan gel formulations containing egg yolk oil and epidermal growth factor for dermal burn treatment. Pharmazie. 2015; 70: 67–73.
48. Goh M., Hwang Y., Tae G. Epidermal growth factor loaded heparin-based hydrogel sheet for skin wound healing. Carbohydr Polym. 2016; 147: 251–260.
49. Mizuno K., Yamamura K., Yano K., et al. Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res A. 2003; 64: 177–181.
50. Wang W., Lin S., Xiao Y., et al. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci. 2008; 82: 190–204.
51. Yu A., Niiyama H., Kondo S., et al. Wound dressing composed of hyaluronic acid and collagen containing EGF or bFGF: comparative culture study. J Biomat Sci Polym Ed. 2013; 24: 1015–1026.
52. Jin G., Prabhakaran M. P., Ramakrishna S. Photosensitive and biomimetic core–shell nanofibrous scaffolds as wound dressing. Photochem Photobiol. 2014; 90: 673–681.
53. Wu J., Ye J., Zhu J., et al. Heparinbased coacervate of FGF2 improves dermal regeneration by asserting a synergistic role with cell proliferation and endogenous facilitated VEGF for cutaneous wound healing. Biomacromolecules. 2016; 17: 2168–2177.
54. Sakiyama-Elbert S. E., Hubbell J. A. Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release. 2000; 65: 389–402.
55. Mahoney D. J., Whittle J. D., Milner C. M., et al. A method for the non-covalent immobilization of heparin to surfaces. // Anal Biochem. 2004; 330: 123–129.
56. Lee K., Yoon J., Lee J., et al. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transplant Proc. 2004; 36: 2464–2465.
Рецензия
Для цитирования:
Липунов А.Р., Афанасов И.М., Воробьева Е.С., Чухнина А.Б., Гладкова М.Г., Кибардин А.В., Митиш В.А. Системы для контролируемого высвобождения и адресной доставки факторов роста в лечении хронических ран. Раны и раневые инфекции. Журнал имени проф. Б.М. Костючёнка. 2018;5(3):6-15. https://doi.org/10.25199/2408-9613-2018-5-3-6-15
For citation:
Lipunov A.R., Afanasov I.M., Vorobeva E.S., Chuhnina A.B., Gladkova M.G., Kibardin A.V., Mitish V.A. Molecular systems for targeted delivery and controlled release of growth factors for chronic wound treatment. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2018;5(3):6-15. (In Russ.) https://doi.org/10.25199/2408-9613-2018-5-3-6-15