Polymers in the treatment of wounds: realities and perspectives
https://doi.org/10.17650/2408-9613-2016-3-1-12-18
Abstract
Today, biopolymers and biomaterials are a broad and growing sphere of interest to both specialists from various fields of science and to society as a whole. The paper discusses the issues concerning the terminological interpretation of concepts, such as polymers, biodegradability, gels and hydrogels, hydrocolloids, films, sponges, and polymer matrices. It gives the results of the authors’ investigations of bandages as films and porous sponges containing the silver levels as given in the instruction (11 prototypes from different Russian and foreign manufacturers). Electron scanning microscopy revealed a varying content of the ground substance in the prototypes within the range from 0 (even no traces of silver were found) to 7.29 %. Thus, the effect of the test samples of bandages may not be always related to the active component that is positioned the ground components, and the therapeutic effect is achieved, for example, by the polymer base of this dressing agent. The main directions in further investigations of polymers for medical purposes are to elaborate technological approaches to producing biopolymers for the reduction of their cost and to make biomaterials with tailor-made properties.
Keywords
About the Authors
O. A. Legon’kovaRussian Federation
27 Bol’shaya Serpukhovskaya St., Moscow, 117997
M. S. Belova
Russian Federation
27 Bol’shaya Serpukhovskaya St., Moscow, 117997
L. Yu. Asanova
Russian Federation
27 Bol’shaya Serpukhovskaya St., Moscow, 117997
A. D. Aliev
Russian Federation
Build. 4, 31 Leninskiy Prospect, Moscow, 119071
A. E. Chalykh
Russian Federation
Build. 4, 31 Leninskiy Prospect, Moscow, 119071
References
1. Biopolymers: biomedical and environmental applications. Ed. by S. Kalia, L. Avérous. NY: John Wiley & Sons, Inc., 2011. 616 p.
2. Absorbable and biodegradable polymers (advances in polymeric materials). Ed. by S.W. Shalaby, K.J.L. Burg. Boca Raton: CRC press, 2003. 304 p.
3. Vert M., Doi Y., Hellwich K.H. et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl Chem 2012;84(2):377–410. DOI: 10.1351/PAC-REC-10-12-04.
4. Chen S.H., Tsao C.T., Chang C.H. et al. Assessment of reinforced poly (ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model. Mater Sci Eng C Mater Biol Appl 2013;33(5):2584–94. DOI: 10.1016/j.msec.2013.02.031. PMID: 23623072.
5. Murakami K., Aoki H., Nakamura S. et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings. Biomaterials 2010;31(1):83–90. DOI: 10.1016/j.biomaterials.2009.09.031. PMID: 19775748.
6. Wang T., Zhu X.K., Xue X.T., Wu D.Y. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydr Polym 2012;88(1):75–83.
7. Zhou Y., Yang H., Liu X. et al. Potential of quaternization-functionalized chitosan fiber for wound dressing. Int J Biol Macromol 2013;52:327–32. DOI: 10.1016/j. ijbiomac.2012.10.012. PMID: 23089086.
8. Muzzarelli R.A., Morganti P., Morganti G. et al. Chitin nanobibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 2007;70(3):274–84. DOI: 10.1016/j.carbpol.2007.04.008.
9. Archana D., Singh B.K., Dutta J., Dutta P.K. In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 2013;95(1):530–9. DOI: 10.1016/j.carbpol.2013.03.034.
10. Pat. EP2121026. Novel injectable chitosan mixtures forming hydrogels. N. BenShalom, Z. Nevo, A. Patchornik, D. Robinson. 2009.
11. Zhang H., Qadeer A., Chen W. In situ gelable interpenetrating double network hydrogel formulated from binary components: thiolated chitosan oxidezed dextran. Biomacromolecules 2011;12(5):1428–37. DOI: 10.1021/bm101192b. PMID: 21410248.
12. Meinel A.J., Germershaus O., Luhmann T. et al. Electrospun matrices for localized drug delievery: current technologies and selected biomedical applications. Eur J Pharm Biopharm 2012;81(1):1–13. DOI: 10.1016/j.ejpb.2012.01.016. PMID: 22342778.
13. Wang C.C., Chen J.P., Chen C.C. An enhancement on water absorbing and permeating abilities of acrylic acid grafted and chitosan/ collagen immobilized polypropylene non-woven fabric: chitosan obtained from Mucor. Mater Sci Eng C 2009;29(4):1133–9. DOI: 10.1016/j.msec.2008.09.044.
14. CN1803849 (A). Method for preparing complete water soluble low molecular weight chitosan/chitooligosaccharace.
15. Dias A.M.A., Rey-Rico A., Oliveira R.A. et al. Wound dressings loaded with an antiinflammatory juca (Libidibia ferrea) extract suing supercritical carbon dioxide technology. J Supercrit Fluids 2013;74:34–45. DOI: 10.1016/j.supflu.2012.12.007.
16. Lagus H., Sarlomo-Rikala M., Böhling T., Vuola J. Prospective study on burns treated with Integra®, a cellulose sponge and split thickness skin graft: comparative clinical and histological study – randomized controlled trial. Burns 2013;39(8):1577–87. DOI: 10.1016/j.burns.2013.04.023. PMID: 23880091.
17. Kanda N., Morimoto N., Ayvazyan A.A. et al. Evaluation of a novel collagen-gelatin scaffold for achieving the sustained release of basic fibroblast growth factor in a diabetic mouse model. J Tissue Eng Regen Med 2014;8(1):29–40. DOI: 10.1002/term.1492. PMID: 22628359.
18. Arul V., Masilamoni J.G., Jesudason E.P. et al. Glucose oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study. J Biomater Appl 2012;26(8):917–38. DOI: 10.1177/0885328210390402. PMID: 21363874.
19. Akturk O., Tezcaner A., Bilgili H. et al. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 2011;112(3):279–88. DOI: 10.1016/j.jbiosc.2011.05.014. PMID: 21697006.
20. Kanokpanont S., Damrongsakkul S., Ratanavaraporn J., Aramwit P. An innovative bi-layered wound dressing made of silk and gelatin for accelerated wound healing. Int J Pharm 2012;436(1–2):141–53. DOI: 10.1016/j.ijpharm.2012.06.046. PMID: 22771972.
21. Chen J.P., Chang G.Y., Chen J.K. Electrospun collagen/chitosan nanofibrous membrane as wound dressing. Colloids and Surfaces A: Physicochem Eng Aspects 2008;313–314: 183–8. DOI: 10.1016/j.colsurfa.2007.04.129.
22. Wang W., Lin S., Xiao Y. et al. Acceleration of diabetic wound healing with chitosan-crosslinked collagen sponge containing recombinant human acidic fibroblast growth factor in healing-impaired STZ diabetic rats. Life Sci 2008;82(3–4):190–204. DOI: 10.1016/j.lfs.2007.11.009. PMID: 18164317.
23. Zaman H.U., Islam J.M., Khan M.A., Khan R.A. Physico-mechanical properties of wound dressing material and its biomedical application. J Mech Behav Biomed Mater 2011;4(7):1369–75. DOI: 10.1016/j.jmbbm.2011.05.007. PMID: 21783147.
24. Jung K., Kim Y., Kim H.S., Jin H.J. Antimicrobial properties of hydrated cellulose membranes with silver nanoparticles. J Biomater Sci Polym Ed 2009;20(3):311–24. DOI: 10.1163/156856209X412182. PMID: 19192358.
25. Serafica G., Mormino R. et al. Microbial cellulose wound dressing for treating chronic, wounds. US7704523 B2 2010.
26. Choi D.S., Kim S., Lim Y.M. et al. Hydrogel incorporated with chestnut honey accelerates wound healing and promotes early HO-1 protein expression in diabetic (db/db) mice. Tissue Eng Regen Med 2012;9(1):36–42. DOI: 10.1007/s13770-012-0036-2.
27. Peršin Z., Maver U., Pivec T. et al. Novel cellulose based materials for sae and efficient wound treatment. Carbohydr Polym 2014;100:55–64. DOI: 10.1016/j.carbpol.2013.03.082.
28. Fu L., Zhou P., Zhang S., Yang G. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation. Mater Sci Eng C 2013;33(5):2995–3000. DOI: 10.1016/j.msec.2013.03.026
29. Matsumoto Y., Kuroyanagi Y. Development of a wound dressing composed of hyaluronic acid sponge containing arginine and epidermal growth factor. J Biomater Sci Polym Ed 2010;21:715–26. DOI: 10.1163/156856209X435844. PMID: 20482980.
30. Al Bayaty F., Abdulla M., Abu Hassan M.I., Masud M. Wound healing potential by hyaluronate gel in streptozotocininduced diabetic rats. Sci Res Essays 2010;5(18):2756–60.
31. Abbruzzese L., Rizzo L., Fanelli G. et al. Effectiveness and safety of a novel gel dressing in the management of neuropathic leg ulcers in diabetic patients: a prospective doubleblind randomized trial. Int J Low Extrem Wounds 2009;8(3):134–40. DOI: 10.1177/1534734609344140. PMID: 19703948.
32. Thu H.E., Zulfakar M.H., Ng S.F. Alginate based bilayer hydrocolloid films as potential slow-release modern wound dressing. Int J Pharm 2012;434(1–2):375–83. DOI: 10.1016/j.ijpharm.2012.05.044. PMID: 22643226.
33. Shaw J., Hughes C.M., Lagan K.M. et al. The effect of topical phenytoin on healing in diabetic foot ulcers: a randomized controlled trial. Diabet Med 2011;28(10):1154–7. DOI: 10.1111/j.1464-5491.2011.03309.x. PMID: 21480976.
34. Goh C.H., Heng P.W.S., Chan L.W. Cross-linker and non-gelling Na+ effects on multi-functional alginate dressings. Carbohydr Polym 2012;87(2):1796–802. DOI: 10.1016/j.carbpol.2011.09.097.
35. Adly O.A., Moghazy A.M., Abbas A.H. et al. Assessment of amniotic and polyurethane membrane dressings in the treatment of burns. Burns 2010;36(5):703–10. DOI: 10.1016/j.burns.2009.09.003. PMID: 20004061.
36. Martineau L., Shek P.N. Evaluation of a bi-layer wound dressing for burn care. II. In vitro and in vivo bactericidal properties. Burns 2006;32(2):172–9. DOI: 10.1016/j.burns.2005.08.012. PMID: 16455202.
37. Abou-Okeil A., Sheta A.M., Amr A., Ali M.A. Wound dressing based on nonwoven viscose fabrics. Carbohydr Polym 2012;90(1):658–66. DOI: 10.1016/j.carbpol.2012.05.093.
38. Yang Y., Xia T., Chen F. et al. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats. Mol Pharm 2012;9(1):48–58. DOI: 10.1021/mp200246b. PMID: 22091745.
39. Huang Z., Lu M., Zhu G. et al. Acceleration of diabetic-wound healing with PEGylated rhaFGF in healing-impaired streptozocin diabetic rats. Wound Repair Regen 2011;19(5):633–44. DOI: 10.1111/j.1524-475X.2011.00722.x. PMID: 22092801.
40. Choi J.S., Leong K.W., Yoo H.S. In vivo wound healing of diabetic ulcers using electrospunnanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 2008;29(5):587–96. DOI: 10.1016/j.biomaterials.2007.10.012. PMID: 17997153.
41. Choi J.S., Choi S.H., Yoo H.S. Coaxial electrospun nanofibers for treatment of diabetic ulcers with binary release of multiple growth factors. J Mater Chem 2011;21:5258–67. DOI: 10.1039/C0JM03706K.
42. Yan Y., Xia T., Zhi W. et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor. Biomaterials 2011;32(18):4243–54. DOI: 10.1016/j.biomaterials.2011.02.042. PMID: 21402405.
43. Dong X., Xu J., Wang W. et al. Repair effect of diabetic ulcers with recombinant human epidermal growth factor loaded by sustained-release microspheres. Sci China C Life Sci 2008;51(11):1039–44. DOI: 10.1007/s11427-008-0126-5. PMID: 18989647.
44. Merrel J.G., McLaughlin S.W., Tie L. et al. Curcumin-loaded poly(epsilon-caprolactone) nanofibres: diabetic wound dressing with anti-oxidant and anti-imflammatory properties. Clin Exp Pharmacol Physiol 2009;36(12):1149–56. DOI: 10.1111/j.1440-1681.2009.05216.x. PMID: 19473187.
45. Costache M.C., Qu H., Ducheyne P., Devore D.I. Polymer-xerogel composites for controlled release wound dressings. Biomaterials 2010;31(24):6336–43. DOI: 10.1016/j.biomaterials.2010.04.065. PMID: 20510447.
46. Jayakumar R., Prabaharan M., Sudheesh Kumar P.T. et al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 2011;29(3):322–37. DOI: 10.1016/j.biotechadv.2011.01.005. PMID: 21262336.
Review
For citations:
Legon’kova O.A., Belova M.S., Asanova L.Yu., Aliev A.D., Chalykh A.E. Polymers in the treatment of wounds: realities and perspectives. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2016;3(1):12-18. (In Russ.) https://doi.org/10.17650/2408-9613-2016-3-1-12-18