Preview

Wounds and wound infections. The prof. B.M. Kostyuchenok journal

Advanced search

COMPARATIVE DESCRIPTION OF HEALING OF SURGICAL WOUNDS IN THE ORAL MUCOSA AND SKIN OF PIGS. LIGHT OPTICAL AND ELECTRON MICROSCOPIC EXAMINATION

https://doi.org/10.17650/2408-9613-2015-2-4-8-14

Abstract

Objective: to study the specific features of the structural elements of the hard palate and skin in the healing of incised and sutured wounds at the stage of hemostasis and inflammation in pigs.

Materials and methods. Nine piglets weighing 35–40 kg were taken for an experiment. 2.5–3.0-cm rectilinear incisions (surgical wound models) were made in the back skin and hard palate. Three skin biopsy specimens and 3 hard palate mucosal biopsy specimens were taken for morphological examinations in each experimental series (control, 6 hours and 3 and 7 days postsurgery). The electron microscopic material was fixed by an in situ immersion method and then processed by the conventional procedure. Semi- and ultrafine sections were examined under a Latimet light microscope (Leica) and a JEM-1400 electron microscope (JEOL), respectively, at an accelerating voltage of 80–120 kW.

Results. A rapid decrement of inflammatory processes in the incised and sutured wounds in the early stages of healing results in delayed cleansing of damaged structures and fibrinoids from the wound surface compared to those in the heard palate mucosa. So formation of mature skin granulation tissue begins on day 7 rather on day 3.

Conclusion. The differences in the phases of hemostasis and inflammation affect the further phases of reparative regeneration (proliferation and scar formation), which may lead to a difference in the development of postoperative wound scar tissue. 

About the Authors

Ch. R. Ragimov
Azerbaijan Medical University, Baku
Azerbaijan
Oral and Maxillofacial Surgery Department


E. K. Gasymov
Azerbaijan Medical University, Baku
Azerbaijan

Department of Histology, Embryology, and Cytology. 

Address: 1 Mirgasymova St., Baku, 1022, Republic of Azerbaijan



T. R. Kuliev
Azerbaijan Medical University, Baku
Azerbaijan
Oral and Maxillofacial Surgery Department


F. G. Rzaev
Azerbaijan Medical University, Baku
Azerbaijan
Department of Electron Microscopy


References

1. Odland G., Ross R. Human wound repair. I. Epidermal regeneration. J Cell Biol 1968;39(1):135–51.

2. Alster T.S., Tanzi E. Hypertrophic scars and keloids. Clin Dermatol 2003;4(4):235–43.

3. Pastar I., Stojadinovic O., Yin N.C. et al. Epithelialization in wound healing: a comprehensive review. Adv Wound Care (New Rochelle) 2014;3(7):445–64.

4. Martin P. Wound healing – aiming for perfect skin regeneration. Science 1997;276(5309):75–81.

5. Bayat A., McGrouther D.A., Ferguson M.W. Skin scarring. Br Med J 2003;326(1):88–92.

6. Ferguson M.W., O’Kane S. Scar-free healing: from embryonic mechanisms to adult therapeutic intervention. Philos Trans R Soc Lond B Biol Sci 2004;359(1445):839–50.

7. Толстых М.П., Ахмедов Б.А., Атаев А.Р. и др. Лечение ран антиоксидантами. Махачкала: Эпоха, 2004. 170 с. [Тоlstykh М.P., Аkhmedov B.А., Аtaev А.R. et al. Treatment of wounds with antioxidants. Маkhachkala: Epokhа, 2004. 170 p. (In Russ.)].

8. Абаев Ю.К. Справочник хирурга. Раны и раневая инфекция. Ростов-на-Дону: Феникс, 2006. 427 с. [Аbaev Yu.K. Surgeon’s reference book. Wounds and wound infection. Rostov-on-Don: Feniks, 2006. 427 p. (In Russ.)].

9. Schrementi M.E., Ferreira A.M., Zender C., DiPietro L.A. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen 2008;16(1): 80–6.

10. Mak K., Manji A., Gallant-Behm C. et al. Scarless healing of oral mucosa is characterized by faster resolution of inflammation and control of myofibroblast action compared to skin wounds in the red Duroc pig model. Dermatol Sci 2009;56(3):168–80.

11. Larjava H., Wiebe C., Gallant-Behm C. et al. Exploring scarless healing of oral soft tissues. J Can Dent Assoc 2011;77:b18.

12. Wu Z., Ding Y., Zhang L. et al. Primary grafting research of tissue engineered oral mucosa lamina propria on skin full thickness wounds. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2006;20(2):172–6.

13. Glim J.E., van Egmond M., Niessen F.B. et al. Detrimental dermal wound healing: what can we learn from the oral mucosa? Wound Repair Regen 2013;21(5):648–60.

14. Pabst O., Bernhardt G., Forster R. The impact of cell-bound antigen transport on mucosal tolerance induction. J Leukoc Biol 2007;82(4):795–800.

15. Leask A., Abraham D. TGF-beta signaling and the fibrotic response. FASEB J 2004;18(7):816–27.

16. Walraven M., Gouverneur M., Middelkoop E. et al. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen 2014;22(1):3–13.

17. Mah W., Jiang G., Olver D. et al. Human gingival fibroblasts display a non-fibrotic phenotype distinct from skin fibroblasts in three-dimensional cultures. PLoS One 2014;9(3):e90715.

18. Ghaffari A., Li Y., Karami A. et al. Fibroblast extracellular matrix gene expression in response to keratinocyte-releasable stratifin. J Cell Biochem 2006;98(2):383–93.

19. Wong J., Gallant-Behm C., Wiebe C. et al. Wound healing in oral mucosa results in reduced scar formation as compared with skin: evidence from the red Duroc pig model and humans. Wound Repair Regen 2009;17(5):717–29.

20. Johnson A., Francis M., DiPietro L. Differential apoptosis in mucosal and dermal wound healing. Adv Wound Care (New Rochelle) 2014;3(12):751–61.

21. Rəhimov Ç.R., Qasımov E.K., Quliyev T.R., Fərzəliyev İ.M. Ağız boşluğunda cərrahi yaraların sağalması prosesinin öyrənilməsi üçün münasib eksperimental model. Azərbaycan Tibb Jurnalı 2014;(2):120–5.

22. Уикли Б.С. Электронная микроскопия для начинающих. М.: Мир, 1975. 325 с. [Weekly B.S. Electronic microscopy for beginners. Мoscow: Мir, 1975. 325 p. (In Russ.)].

23. Kuo J. Electron microscopy: methods and protocols. Totowa: Humana Press, 2007. 625 p.

24. D’Amico F. A polychromatic staining method for epoxy embedded tissue: a new combination of methylene blue and basic fuchsine for light microscopy. Biotech Histochem 2005;80(5–6):207–10.

25. Undas A., Ariëns R.A. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler Thromb Vasc Biol 2011;31(12):e88–99.

26. Weigandt K.M., White N., Chung D. et al. Fibrin clot structure and mechanics associated with specific oxidation of methionine residues in fibrinogen. Biophys J 2012;103(11):2399–407.

27. El Kebir D., Filep J.G. Role of neutrophil apoptosis in the resolution of inflammation. Scientific World J 2010;10: 1731–48.

28. Esmann L., Idel C., Sarkar A. et al. Phagocytosis of apoptotic cells by neutrophil granulocytes: diminished proinflammatory neutrophil functions in the presence of apoptotic cells. J Immunol 2010;184(1):391–400.

29. Манских В.Н. Пути гибели клеток и их биологическое значение. Цитология 2007;49(11):909–15. [Маnskikh V.N. Ways of cells’ death and its biologic value. Tsitologiya = Cytology 2007;49(11):909–15. (In Russ.)].

30. Velnar T., Bailey T., Smrkolj V. The wound healing process: an overview of the cellular and molecular mechanisms. J Int Med Res 2009;37(5):1528–42.


Review

For citations:


Ragimov Ch.R., Gasymov E.K., Kuliev T.R., Rzaev F.G. COMPARATIVE DESCRIPTION OF HEALING OF SURGICAL WOUNDS IN THE ORAL MUCOSA AND SKIN OF PIGS. LIGHT OPTICAL AND ELECTRON MICROSCOPIC EXAMINATION. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2015;2(4):8-14. (In Russ.) https://doi.org/10.17650/2408-9613-2015-2-4-8-14

Views: 1404


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2408-9613 (Print)
ISSN 2500-0594 (Online)
X