Is it possible to use wound dressings as carriers of bacteriophages and lactobacilli? In vitro study
https://doi.org/10.25199/2408-9613-2023-10-3-22-32
Abstract
Objective: To find wound dressings which could incorporate solutions of bacteriophages and lactobacilli and could have potential to overcome
microorganism resistance to antibiotic therapy.
Material and methods. Physicochemical and biological properties of 12 samples of wound coverings of different structures and properties which had been used for combustion wounds were analyzed. Wound dressings differed in their keystone structure (biopolymers of natural and artificial origin) and in biodegradability. The following properties of wound dressings were studied in vitro: absorption, biological inertness and duration of viability / lytic activity of staphylococcal bacteriophage and antagonistic activity of L. plantarum inoculum. In addition, own antibacterial activity of wound dressings against S. aureus culture was studied too.
Research results. Among the studied wound dressings, the largest mass of liquid can be absorbed by the following wound dressings: Likosorb®, Fibrosorb®, Biatraum®, Hitokol-S®. All studied wound coverings are biologically inert towards the staphylococcal bacteriophage (they ensure the formation of zones of S. aureus lysis). Viability of L. plantarum inoculum was promoted by wound coverings OPSITE® Post-Op Visible, Fibrosorb®, Algipran®, Biatraum®. Wound coverings OPSITE® Post-Op Visible, Fibrosorb®, Likosorb® maintain the lytic activity of staphylococcal bacteriophage up to 7 days. L. plantarum viability for up to 2 days was registered in Fibrosorb® wound covering, up to 3 days – in OPSITE® Post-Op Visible. Wound coverings Chitokol-S®, Kollakhit® FA, Algipran® and Aquacel Ag® have their own antibacterial activity against S. aureus; when they were saturated with staphylococcal bacteriophage solution, their antibacterial activity increased.
Conclusion. Wound coverings with sponge structure based on chitosan and polyurethane exhibit the greatest absorption level of inoculum solutions of L. plantarum and staphylococcal bacteriophage maintaining their viability / lytic activity.
Keywords
About the Authors
V. V. BeschastnovRussian Federation
Vladimir V. Beschastnov, MD, Dr. Sc. (Med.), Professor, Senior Researcher
University Clinic
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
I. Yu. Shirokova
Russian Federation
Irina Yu. Shirokova, MD, Dr. Sc. (Med.), Head of the Laboratory, Associate
Professor
Research Institute of Preventive Medicine; Bacteriological Laboratory; Department of Epidemiology, Microbiology and Evidence-Based Medicine
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
N. A. Belyanina
Russian Federation
Natalia A. Belyanina, MD, Junior Researcher
University Clinic
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
I. E. Pogodin
Russian Federation
Igor E. Pogodin, MD, traumatologist-orthopedist, head of the department
University Clinic; burn department (adults)
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
A. A. Tulupov
Russian Federation
Alexander A. Tulupov, MD, Junior Researcher
University Clinic
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
Yu. O. Tyumenkov
Russian Federation
Yuriy O. Tumenkov, MD, Junior Researcher
University Clinic
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
O. V. Kovalishena
Russian Federation
Olga V. Kovalishena, MD, Dr. Sc. (Med.), Professor, Head of the Department
Department of Epidemiology, Microbiology and Evidence-Based Medicine
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
T. V. Prisada
Russian Federation
Tatiyana V. Prisada, MD, Cand. Sc. (Med.), head of the workshop
bacteriophage workshop
603950; 44 Gruzinskaya Str.; Nizhny Novgorod
E. F. Badikov
Russian Federation
Emil F. Badikov, Emil F. Badikov
University Clinic
603005; 10/1 pl. Minin and Pozharsky; Nizhny Novgorod
References
1. Dąbrowska K., Abedon S. T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol Mol Biol Rev. 2019; 83 (4): e00012– e00019.
2. Abedon S. Phage therapy pharmacology: calculating phage dosing. Adv Appl Microbiol. 2011; 77: 1–40.
3. Venturini C., Petrovic Fabijan A., Fajardo Lubian A, et al. Biological foundations of successful bacteriophage therapy. EMBO Mol Med. 2022; 14 (7): e12435.
4. Merabishvili M., Monserez R., van Belleghem J., et al. Stability of bacteriophages in burn wound care products. PLoS One. 2017; 12(7): e0182121.
5. Malik D. J., Sokolov I. J., Vinner G. K., et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interface Sci. 2017; 249: 100–133.
6. Lenzmeier T. D., Mudaliar N. S., Stanbro J. A., et al. Application of Lactobacillus gasseri 63 AM supernatant to Pseudomonas aeruginosa-infected wounds prevents sepsis in murine models of thermal injury and dorsal excision. J Med Microbiol. 2019; 68 (10): 1560–1572.
7. Valdéz J. C., Peral M. C., Rachid M., et al. Interference of Lactobacillus plantarum with Pseudomonas aeruginosa in vitro and in infected burns: the potential use of probiotics in wound treatment. Clin Microbiol Infect. 2005; 11 (6): 472–479.
8. Soleymanzadeh Moghadam S., Mohammad N., Ghooshchian M., et al. Comparison of the effects of Lactobacillus plantarum versus imipenem on infected burn wound healing. Med J Islam Repub Iran. 2020; 34: 94.
9. Aslanov B. I., Zueva L. P., Punchenko O. E., et al. Rational use of bacteriophages in therapeutic and antiepidemic practice = Aslanov B. I., Zueva L. P., Punchenko O. E. i dr. Racional’noe primenenie bakteriofagov v lechebnoj i protivoepidemicheskoj praktike : metodicheskie rekomendacii. Moskva, 2022. 32 s. (In Russ.)
10. Pusateri A. E., McCarthy S. J., Gregory K. W., et al. Effect of a chitosan-based hemostatic dressing on blood loss and survival in a model of severe venous hemorrhage and hepatic injury in swine. J Trauma. 2003; 54 (1): 177–182.
11. Rabea E. I., Badawy M. E., Stevens C. V., et al. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules. 2003; 4 (6): 1457–1465.
12. Mashel V. V., Kondratenko G. G., Protasevich A. I., et al. Antimicrobial activity of chitosan nanofibers and its modifications in relation to pathogens of wound infection = Mashel’ V. V., Kondratenko G. G., Protasevich A. I. i dr. Antimikrobnaya aktivnost’ nanovolokon hitozana i ego modifikacij po otnosheniyu k vozbuditelyam ranevoj infekcii. Voennaya medicina. 2022; 3 (64): 40–45. (In Russ.)
13. Azad A. K., Sermsintham N., Chandrkrachang S., et al. Chitosan membrane as a wound-healing dressing: characterization and clinical application. J Biomed Mater Res B Appl Biomater. 2004; 69 (2): 216–222.
14. Di Martino A., Sittinger M., Risbud M. V. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005; 26 (30): 5983–5990.
15. Aksungur P., Sungur A., Unal S., et al. Chitosan delivery systems for the treatment of oral mucositis: in vitro and in vivo studies. J Control Release. 2004; 98 (2): 269–279.
16. Dai T., Tanaka M., Huang Y. Y., et al. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects. Expert Rev Anti Infect Ther. 2011; 9 (7): 857–879.
17. Bolshakov I. N., Eremeev A. V., Cherdantsev D. V., et al. Biodegradable wound coatings based on polysaccharide polymers in the treatment of extensive burn injury (clinical study) = Bol’shakov I. N., Eremeev A. V., Cherdancev D. V. i dr. Biodegradiruemye ranevye pokrytiya na osnove polisaharidnyh polimerov v lechenii obshirnoj ozhogovoj travmy (klinicheskoe issledovanie). Voprosy rekonstruktivnoj i plasticheskoj hirurgii. 2011; 3 (38): 56–62. (In Russ.)
18. Beschastnov V. V., Ryabkov M. G., Leontiev A. E., et al. In vitro study of the viability of bacteriophages as part of complex hydrogel wound coatings = Beschastnov V. V., Ryabkov M. G., Leont’ev A.E. i dr. Issledovanie in vitro zhiznesposobnosti bakteriofagov v sostave kompleksnyh gidrogelevyh ranevyh pokrytij. Sovremennye tekhnologii v medicine. 2021; 13 (2): 32–39. (In Russ.)
19. Anany H., Chen W., Pelton R., Griffiths M. W. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol. 2011; 77 (18): 6379–6387.
20. Serwer P., Hayes S. J. Agarose gel electrophoresis of bacteriophages and related particles. I. Avoidance of binding to the gel and recognizing of particles with packaged DNA. Electrophoresis. 1982; 3 (2): 76–80.
21. Chang R. Y. K., Morales S., Okamoto Y., et al. Topical application of bacteriophages for treatment of wound infections. Transl Res. 2020; 220: 153–166.
22. Parshin D. S., Topchiev M. A., Pyatakov S. N., et al. Results of phage therapy of infectious complications in emergency abdominal surgery = Parshin D. S., Topchiev M. A., Pyatakov S. N. i dr. Rezul’taty fagoterapii infekcionnyh oslozhnenij v neotlozhnoj abdominal’noj hirurgii. Tavricheskij mediko-biologicheskij vestnik. 2022; 25 (2): 72–80. (In Russ.)
23. Brown T. L., Petrovski S., Dyson Z. A., et al. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PloS One. 2016; 11 (3): e0151184.
24. Brown T. L., Thomas T., Odgers J., et al. Bacteriophage formulated into a range of semisolid and solid dosage forms maintain lytic capacity against isolated cutaneous and opportunistic oral bacteria. J Pharm Pharmacol. 2017; 69 (3): 244–253.
25. No H. K., Park N. Y., Lee S. H., et al. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int J Food Microbiol. 2002; 74 (1-2): 65–72.
Review
For citations:
Beschastnov V.V., Shirokova I.Yu., Belyanina N.A., Pogodin I.E., Tulupov A.A., Tyumenkov Yu.O., Kovalishena O.V., Prisada T.V., Badikov E.F. Is it possible to use wound dressings as carriers of bacteriophages and lactobacilli? In vitro study. Wounds and wound infections. The prof. B.M. Kostyuchenok journal. 2023;10(3):22-32. (In Russ.) https://doi.org/10.25199/2408-9613-2023-10-3-22-32